

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

&

SMEC TECHNOLOGIES.

VALUE ADDED COURSE

ON

ANDROID APPLICATION DEVELOPEMENT

COURSE MATERIAL

INTRODUCTION

This course focuses on Android Development. But what is Android?

Android is an operating system. That is, it’s software that connects hardware to software

and provides general services. But more than that, it’s a mobile specific operating system:

an OS designed to work on mobile (read: handheld, wearable, carry-able) devices.

 Note that the term “Android” also is used to refer to the “platform” (e.g., devices that

use the OS) as well as the ecosystem that surrounds it. This includes the device

manufacturers who use the platform, and the applications that can be built and run

on this platform. So “Android Development” technically means developing

applications that run on the specific OS, it also gets generalized to refer to developing

any kind of software that interacts with the platform.

1.1 Android History

If you’re going to develop systems for Android, it’s good to have some familiarity with the

platform and its history, if only to give you perspective on how and why the framework is

designed the way it is.

 2003: The platform was originally founded by a start-up “Android Inc.” which aimed

to build a mobile OS operating system (similar to what Nokia’s Symbian was doing

at the time)

 2005: Android was acquired by Google, who was looking to get into mobile

 2007: Google announces the Open Handset Alliance, a group of tech companies

working together to develop “open standards” for mobile platforms. Members

included phone manufacturers like HTC, Samsung, and Sony; mobile carriers like T-

Mobile, Sprint, and NTT DoCoMo; hardware manufacturers like Broadcom and

Nvidia; and others. The Open Handset Alliance now (2017) includes 86 companies.

o Note this is the same year the first iPhone came out!

 2008: First Android device is released: the HTC Dream (a.k.a. T-Mobile G1)

Specs: 528Mhz ARM chip; 256MB memory; 320x480 resolution capacitive touch;

slide-out keyboard! Author’s opinion: a fun little device.

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Symbian
https://www.openhandsetalliance.com/
https://en.wikipedia.org/wiki/HTC_Dream

 2010: First Nexus device is released: the Nexus One. These are Google-developed

“flagship” devices, intended to show off the capabilities of the platform.

Specs: 1Ghz Scorpion; 512MB memory; .37" at 480x800 AMOLED capacitive

touch.

o For comparison, the iPhone 7 Plus (2016) has: 2.34Ghz dual core A10 64bit

Fusion; 3GB RAM; 5.5" at 1920x1080 display.

As of 2016, this program has been superceded by the Pixel range of devices.

 2014: Android Wear, a version of Android for wearable devices (watches) is

announced.

 2016: Daydream, a virtual reality (VR) platform for Android is announced

In short, Google keeps pushing the platform wider so it includes more and more capabilities.

Today, Android is incredibly popular (to put it mildly). Android is incredibly popular! (see

e.g., here, here, and here)

 In any of these analyses there are some questions about what exactly is counted…

but what we care about is that there are a lot of Android devices out there! And more

than that: there are a lot of different devices!

1.1.1 Android Versions

Android has gone through a large number of “versions” since it’s release:

Date Version Nickname API Level

Sep 2008 1.0 Android 1

Apr 2009 1.5 Cupcake 3

Sep 2009 1.6 Donut 4

https://en.wikipedia.org/wiki/Google_Nexus
https://en.wikipedia.org/wiki/Nexus_One
https://en.wikipedia.org/wiki/IPhone_7
https://en.wikipedia.org/wiki/Pixel_(smartphone)
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.theverge.com/2017/2/16/14634656/android-ios-market-share-blackberry-2016
https://www.businessinsider.com/iphone-v-android-market-share-2014-5

Date Version Nickname API Level

Oct 2009 2.0 Eclair 5

May 2010 2.2 Froyo 8

Dec 2010 2.3 Gingerbread 9

Feb 2011 3.0 Honeycomb 11

Oct 2011 4.0 Ice Cream Sandwich 14

July 2012 4.1 Jelly Bean 16

Oct 2013 4.4 KitKat 19

Nov 2014 5.0 Lollipop 21

Oct 2015 6.0 Marshmallow 23

Aug 2016 7.0 Nougat 24

Mar 2017 O preview Android O Developer Preview

Each different “version” is nicknamed after a dessert, in alphabetica order. But as

developers, what we care about is the API Level, which indicates what different

programming interfaces (classes and methods) are available to use.

 You can check out an interactive version of the history through Marshmallow

at https://www.android.com/history/

 For current usage breakdown, see https://developer.android.com/about/dashboards/

Additionally, Android is an “open source” project released through the “Android Open

Source Project”, or ASOP. You can find the latest version of the operating system code

https://www.android.com/history/
https://developer.android.com/about/dashboards/
https://source.android.com/

at https://source.android.com/; it is very worthwhile to actually dig around in the source

code sometimes!

While new versions are released fairly often, this doesn’t mean that all or even many devices

update to the latest version. Instead, users get updated phones historically by purchasing

new devices (every 18m on average in US). Beyond that, updates—including security

updates—have to come through the mobile carriers, meaning that most devices are never

updated beyond the version that they are purchases with.

 This is a problem from a consumer perspective, particularly in terms of security!

There are some efforts on Google’s part to to work around this limitation by moving

more and more platform services out of the base operating system into a separate

“App” called Google Play Services.

 But what this means for developers is that you can’t expect devices to be running the

latest version of the operating system—the range of versions you need to support is

much greater than even web development!

1.1.2 Legal Battles

When discussing Android history, we would be remiss if we didn’t mention some of the

legal battles surrounding Android. The biggest of these is Oracle v Google. In a nutshell,

Oracle claims that the Java API is copyrighted (that the method signatures themeselves and

how they work are protected), so because Google uses that API in Android, Google is

violating the copyright. In 2012 a California federal judge decided in Google favor (that one

can’t copyright an API). This was then reversed by the Federal Circuit court in 2014. The

verdict was appealed to the Supreme courset in 2015, who refused to hear the case. It then

went back to the the district court, which ruled that Google’s use of the API was fair use.

See https://www.eff.org/cases/oracle-v-google for a summary, as well

as https://arstechnica.com/series/series-oracle-v-google/

 One interesting side effect of this battle: the latest version of Android (Nougat) uses

the OpenJDK implementation of Java, instead of Google’s own in-violation-but-fair-

use implementation see here. This change shouldn’t have any impact on us as

developers, but it’s worth keeping an eye out for potentially differences between

Android and Java SE.

https://source.android.com/
https://www.eff.org/cases/oracle-v-google
https://www.eff.org/cases/oracle-v-google
https://arstechnica.com/series/series-oracle-v-google/
https://openjdk.java.net/
https://venturebeat.com/2015/12/29/google-confirms-next-android-version-wont-use-oracles-proprietary-java-apis/

There have been other legal challenges as well. While not directly about Android, the other

major relevant court battle is Apple v Samsung. In this case, Apple claims that Samsung

infringed on their intellectual property (their design patents). This has gone back and forth

in terms of damages and what is considered infringing; the latest development is that the

Supreme Court heard the case and sided with Samsung that infringing design patents

shouldn’t lead to damages in terms of the entire device… it’s complicated (the author is not

a lawyer).

So overall: Android is a growing, evolving platform that is embedded in and affecting the

social infrastructures around information technology in numerous ways.

1.2 Android Architecture and Code

Developing Android applications involves interfacing with the Android platform and

framework. Thus you need a high level understanding of the architecture of the Android

platform. See https://source.android.com/devices/ for more details.

Android Architecture (image from: hub4tech)

Like so many other systems, the Android platform is built as a layered architecture:

https://arstechnica.com/series/apple-v-samsung/
https://www.nytimes.com/2016/12/06/technology/samsung-apple-smartphone-patent-supreme-court.html?_r=0
https://source.android.com/devices/

 At it’s base, Android runs on a Linux kernel for interacting with the device’s

processor, memory, etc. Thus an Android device can be seen as a Linux computer.

 On top of that kernel is the Hardware Abstraction Layer: an interface to drivers that

can programmatically access hardware elements, such as the camera, disk storage,

Wifi antenna, etc.

o These drivers are generally written in C; we won’t interact with them directly

in this course.

 On top of the HAL is the Runtime and Android Framework, which provides a set of

abstraction in the Java language which we all know an love. For this course, Android

Development will involve writing Java applications that interact with the Android

Framework layer, which handles the task of interacting with the device hardware for

us.

1.2.1 Programming Languages

There are two programming languages we will be working with in this course:

1. Java: Android code (program control and logic, as well as data storage and

manipulation) is written in Java.

Writing Android code will feel a lot writing any other Java program: you create

classes, define methods, instantiate objects, and call methods on those objects. But

because you’re working within a framework, there is a set of code that already

exists to call specific methods. As a developer, your task will be to fill in what these

methods do in order to run your specific application.

o In web terms, this is closer to working with Angular (a framework) than

jQuery (a library).

o Importantly: this course expects you to have “journeyman”-level skills in

Java (apprenticeship done, not yet master). We’ll be using a number of

intermediate concepts (like generics and inheritance) without much fanfare

or explanation (though see the appendix).

https://martinfowler.com/bliki/InversionOfControl.html
https://info448-s17.github.io/lecture-notes/java-review.html#java-review

2. XML: Android user interfaces and resources are specified

in XML (EXtensible Markup Language). To compare to web programming: the

XML contains what would normally go in the HTML/CSS, while the Java code will

contain what would normally go in the JavaScript.

XML is just like HTML, but you get to make up your own tags. Except we’ll be

using the ones that Android made up; so it’s like defining web pages, except with a

new set of elements. This course expects you to have some familiarity with HTML

or XML, but if not you should be able to infer what you need from the examples.

1.2.2 Building Apps

As stated above, we will write code in Java and XML. But how does that code get run on

the phone’s hardware?

Pre-Lollipop (5.0), Android code ran on Dalvik: a virtual machine similar to the JVM used

by Java SE.

 Fun fact for people with a Computer Science background: Dalvik uses a register-

based architecture rather than a stack-based one!

A developer would write Java code, which would then be compiled into JVM bytecode,

which would then be translated into DVM (Dalvik virtual machine) bytecode, that could be

run on Android devices. This DVM bytecode was stored in .dex or .odex (“[Optimized]

Dalvik Executable”) files, which is what was loaded onto the device. The process of

converting from Jave code to dex files is called “dexing” (so code that has been built is

“dexed”).

Dalvik does include JIT (“Just In Time”) compilation to native code that runs much faster

than the code interpreted by the virtual machine, similar to the Java HotSpot. This navite

code is faster because no translation step is needed to talk to the actual hardware (the OS).

From Lollipop (5.0) on, Android instead uses Android Runtime (ART) to run code. ART’s

biggest benefit is that it compiles the .dex bytecode into native code on installation using

AOT (“Ahead of Time”) compilation. ART continues to accept .dex bytecode for backwards

compatibility (so the same dexing process occurs), but the code that is actually installed and

run on a device is native. This allows for applications to have faster execution, but at the

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Dalvik_(software)
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Register_machine
https://en.wikipedia.org/wiki/Register_machine
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
https://source.android.com/devices/tech/dalvik/

cost of longer install times—but since you only install an application once, this is a pretty

good trade.

After being built, Android applications (the source, dexed bytecode, and any resources)

are packaged into .apk files. These are basically zip files (they use the same gzip

compression); if you rename the file to be .zip and you can unpackage them! The .apk files

are then cryptographically signed to specify their authenticity, and either “side-loaded” onto

the device or uploaded to an App Store for deployment.

 The signed .apk files are basically the “executable” versions of your program!

 Note that the Android application framework code is actually “pre-DEXed” (pre-

compiled) on the device; when you write code, you’re actually compiling against

empty code stubs (rather than needing to include those classes in your .apk)! That

said, any other 3rd-party libraries you include will be copied into your built App,

which can increase its file size both for installation and on the device.

To summarize, in addition to writing Java and XML code, when building an App you need

to:

1. Generate Java source files (e.g., from resource files, which are written XML used to

generate Java code)

2. Compile Java code into JVM bytecode

3. “dex” the JVM bytecode into Dalvik bytecode

4. Pack in assets and graphics into an APK

5. Cryptographically sign the APK file to verify it

6. Load it onto the device

There are a lot of steps here, but there are tools that take care of it for us. We’ll just write

Java and XML code and run a “build” script to do all of the steps!

1.3 Development Tools

There are a number of different hardware and software tools you will need to do Android

development:

https://en.wikipedia.org/wiki/Digital_signature

1.3.1 Hardware

Since Android code is written for a virtual machine anyway, Android apps can be developed

and built on any computer’s operating system (unlike some other mobile OS…).

But obviously Android apps will need to be run on Android devices. Physical devices are

the best for development (they are the fastest, easiest way to test), though you’ll need USB

cable to be able to wire your device into your computer. Any device will work for this

course; you don’t even need cellular service (just WiFi should work). Note that if you a re

unfamiliar with Android devices, you should be sure to play around with the interface to get

used to the interaction language, e.g., how to click/swipe/drag/long-click elements to use an

app.

 You will need to turn on developer options in order to install development apps on

your device!

If you don’t have a physical device, it is also possible to use the Android Emulator, which

is a “virtual” Android device. The emulator represents a generic device with hardware you

can specify… but it does have some limitations (e.g., no cellular service, no bluetooth, etc).

 While it has improved recently, the Emulator historically does not work very well on

Windows; I recommend you develop on either a Mac or a physical device. In either

case, make sure you have enabled HAXM (Intel’s Acceleration Manager, which

allows the emulator to utilize your GPU for rendering): this speeds things up

considerably.

1.3.2 Software

Software needed to develop Android applications includes:

 The Java 7 SDK (not just the JRE!) This is because you’re writing Java code!

 Gradle or Apache ANT. These are automated build tools—in effect, they let you

specify a single command that will do a bunch of steps at once (e.g., compile files,

dex files, move files, etc). These are how we make the “build script” that does the 6

build steps listed above.

https://developer.android.com/studio/run/device.html
http://developer.android.com/tools/device.html
https://developer.android.com/studio/run/emulator.html
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/
http://ant.apache.org/

o ANT is the “old” build system, Gradle is the “modern” build system (and so

what we will be focusing on).

o Note that you do not need to install Gradle separately for this course.

 Android Studio & Android SDK is the official IDE for developing Android

applications. Note that the IDE comes bundled with the SDK. Android Studio

provides the main build system: all of the other software (Java, Gradle) goes to

support this.

The SDK comes with a number of useful command-line tools. These include:

o adb, the “Android Device Bridge”, which is a connection between your

computer and the device (physical or virtual). This tool is used for console

output!

o emulator, which is a tool used to run the Android emulator

o deprecated/removed android: a tool that does SDK/AVD (Android Virtual

Device) management. Basically, this command-line utility did everything that

the IDE did, but from the command-line! It has recently been removed from

the IDE.

I recommend making sure that the SDK command-line tools are installed. Put

the tools and platform-tools folders on your computer’s PATH; you can run adb to

check that everything works. All of these tools are built into the IDE, but they can

be useful fallbacks for debugging.

1.4 Hello World

As a final introductory steps, this lecture will walk you through creating and running a basic

App so that you can see what you will actually be working with. You will need to have

Android Studio installed for this to work.

1. Launch Android Studio if you have it (may take a few minutes to open)

2. Start a new project.

o Use your UW NetID in the domain.

o Make a mental note of the project location so you can find your code later!

https://developer.android.com/studio/index.html
https://developer.android.com/studio/command-line/index.html

o Target: this is the “minimum” SDK you support. We’re going to target Ice

Cream Sandwich (4.0.3, API 15) for most this class, as the earliest version of

Android most our apps will support.

 Note that this is different than the “target SDK”, which is the version

of Android you tested your application against (e.g., what system did

you run it on?) For this course we will be testing on API 21 (Lollipop);

we’ll specify that in a moment.

3. Select an Empty Activity

o Activities are “Screens” in your application (things the user can do).

Activities are discussed in more detail in the next lecture.

4. And boom, you have an Android app! Aren’t frameworks lovely?

1.4.1 The Emulator

We can run our app by clicking the “Play” or “Run” button at the top of the IDE. But we’ll

need a device to run the app on, so let’s make an emulator!

The Nexus 5 is a good choice for supporting “older” devices. The new Pixel is also a

reasonable device to test against.

 You’ll want to make sure you create a Lollipop device, using the Google APIs (so

we have special classes available to us), and amost certainly running on x86 (Intel)

hardware

 Make sure that you’ve specified that it accepts keyboard input. You can always ed it

this emulator later (Tools > Android > AVD Manager).

After the emulator boots, you can slide to unlock, and there is our app!

1.4.2 Project Contents

So what does our app look like in code? What do we have?

Note that Android Studio by default shows the “Android” view, which organizes files

thematically. If you go to the “Project” view you can see what the actual file system looks

like. In Android view, files are organized as follows:

 app/ folder contains our application

o manifests/ contains the Android Manifest files, which is sort of like a

“config” file for the app

o java/ contains the Java source code for your project. You can find

the MyActivity file in here

o res/ contains resource files used in the app. These are where we’re going to

put layout/appearance information

 Also have the Gradle scripts. There are a lot of these:

o build.gradle: Top-level Gradle build; project-level (for building!)

o app/build.gradle: Gradle build specific to the app use this one to customize

project!. We can change the Target SDK in here!

o proguard-rules.pro: config for release version (minimization, obfuscation,

etc).

o gradle.properties: Gradle-specific build settings, shared

o local.properties: settings local to this machine only

o settings.gradle: Gradle-specific build settings, shared

Note that ANT would instead give:

o build.xml: Ant build script integrated with Android SDK

o build.properties: settings used for build across all machines

o local.properties: settings local to this machine only

We’re using Gradle, but it is good to be aware of ANT stuff for legacy purposes

 res has resource files. These are XML files that specify details of the app–such as

layout.

o res/drawable/: contains graphics (PNG, JPEG, etc)

o res/layout/: contains UI XML layout files

o res/mipmap/: conatins launcher icon files in different resolutions

 Fun fact: MIP stands for “multum in parvo”, which is Latin for “much

in little” (because multiple resolutions of the images are stored in a

single file). “Map” is used because Mipmaps are normally used for

texture mapping.

o res/values/: contains XML definitions for general constants

https://info448-s17.github.io/lecture-notes/introduction.html

See also: http://developer.android.com/guide/topics/resources/available-

resources.html, or Lecture 3.

We can also consider what the application code does. While we’ll revisit this in more detail

in the next lecture, it’s useful to start seeing how the framework is structured:

We’ll start with the MyActivity Java source file. This class extends Activity (actually it

extends a subclass that supports Material Design components), allowing us making our own

customizations to what the app does.

In this class, we override the onCreate() method that is called by the framework when the

Activity starts (see next lecture).

 We call the super method, and then setContentView() to specify what the content

(appearance) of our Activity is. This is passed in a value from something

called R. R is a class that is generated at compile time and contains constants that

are defined by the XML “resource” files! Those files are converted into Java

variables, which we can access through the R class.

R.layout refers to the “layout” XML resource, so can go there (remember: inside res/).

Opening these XML files they appear in a “design” view. This view lets you use a graphical

system to lay out your application (similar to a PowerPoint slide).

 However, even as the design view becomes more powerful, using it is still frowned

upon by many developers for historical reasons. It’s often cleaner to write out the

layouts and content in code. This is the same difference between writing your own

HTML and using something like FrontPage or DreamWeaver or Wix to create a page.

While those are legitimate applications, they are less “professional”.

In the code view, we can see the XML: tags, attributes, values. Tags nested inside one

another. The provided XML code defines a layout, and inside that is

a TextView (a View representing some text), which has a value: text! We can change that

and then re-run the app to see it update!

 It’s also possible to define this value in values/strings (e.g., as a constant), then refer

to as @string/message. More on this proces later.

Finally, as a fun demonstration, try to set an icon for the App (in Android Studio, go to: File

> New > Image Asset)

http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/view/View.html

2.1 Resources

Resources can be found in the res/ folder, and represent elements or data that are “external”

to the code. You can think of them as “media content”: often images, but also things like

text clippings (or short String constants). Textual resources are usually defined in XML

files. This is because resources represent elements (e.g., content) that is separate from the

code (the behavior of the app), so is kept separate from the Java code to support

the Principle of Separation of Concerns

 By defining resources in XML, they can be developed (worked on) without coding

tools (e.g., with systems like the graphical “layout design” tab). Theoretically you

could have a Graphic Designer create these resources, which can then be integrated

into the code without the designer needing to do a lick of Java.

 Similarly, keeping resources separate allows you to choose what resources to

include dynamically. You can choose to show different images based on device

screen resolution, or pick different Strings based on the language of the device

(internationalization!)—the behavior of the app is the same, but the “content” is

different!

o This is similar to how in web development we may want to have the same

JavaScript from different HTML.

What should be a resource? In general:

 Layouts should always be resources

 UI controls (buttons, etc) should mostly be defined as resources (part of layouts),

though behavior will be defined programmtically (in Java)

 Any graphic images (drawables) should be resources

 Any user-facing strings should be resources

 Style and theming information should be resources

As introduced in Lecture 1, there are a number of different resource types used in Android,

many of which can be found in the res/ folder of a default Android project, including:

 res/drawable/: contains graphics (PNG, JPEG, etc)

https://developer.android.com/guide/topics/resources/overview.html
https://developer.android.com/guide/topics/resources/available-resources.html

 res/layout/: contains UI XML layout files

 res/mipmap/: conatins launcher icon files in different resolutions

 res/values/: contains XML definitions for general constants

o /strings: short string constants (e.g., labels)

o /colors: color constants

o /styles : constants for style and theme details

o /dimen : dimensional constants (like default margins); not created by default

in Android Studio 2.3+.

The details about these different kinds of resources is a bit scattered throughout the

documentation, but Resource Types6 is a good place to start, as is Providing Resources.

2.1.1 Alternate Resources

These aren’t the only names for resource folders: as mentioned above, part of the goal of

resources is that they can be localized: changed depending on the device! You are thus able

to specify folders for “alternative” resources (e.g., special handling for another language, or

for low-resolution devices). At runtime, Android will check the configuration of the device,

and try to find an alternative resource that matches that config. If it it can’t find a relevant

alternative resource, it will fall back to the “default” resource.

There are many different configurations that can be used to influence resources;

see Providing Resources7. To highlight a few options, you can specify different resources

based on:

 Language and region (e.g., via two-letter ISO codes)

 Screen size(small, normal, medium, large, xlarge)

 Screen orientation (port for portrait, land for landscape)

 Specifc screen pixel density (dpi) (ldpi, mdpi, hdpi, xhdpi, xxhdpi, etc.). xxhdpi is

pretty common for high-end devices. Note that dpi is “dots per inch”, so these values

represent the number of pixels across relative to the device size!

 Platform version (v1, v4, v7… for each API number)

Configurations are indicated using the directory name, giving them the

form <resource_name>(-<config_qualifier>)+

 You can see this in action by using the New Resource wizard (File > New > Android

resource file) to create a welcome message (a string resource, such as for

https://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/topics/resources/available-resources.html
https://developer.android.com/guide/topics/resources/providing-resources.html#ResourceTypes
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

the app_name) in another language8, and then changing the device’s language

settings to see the content automatically adjust!

 <?xml version="1.0" encoding="utf-8"?>

 <resources>

 <string name="app_name">Mon Application</string>

</resources>

 Switch to the Package view in Android Studio to see how the folder structure for this

works.

2.1.2 XML Details

Resources are usually defined as XML (which is similar in syntax to HTML).

The strings.xml example used above involves fairly simple elements but more

complexresource is pretty simple, but more complex details can be seen in

the activity_main.xml resource inside layout/.

 Android-specific attributes are namespaced with a android: prefix, to avoid any

potential conflicts (e.g., so we know we’re talking about Android’s text instead of

something else).

 We can use the @ symbol to reference one resource from another, following the

schema @[<package_name>:]<resource_type>/<resource_name>

 We can also use the + symbol to create a new resource that we can refer to; this is a

bit like declaring a variable inside an attribute. This is most commonly used with

the android:id attribute (android:id="@+id/identifier"), see below for details.

2.1.3 R

Although XML resources are defined separately from the Java code, resources can

be accessed from within Java. When an application is compiled, the build tools (e.g.,

gradle) generate an additional Java class called R (for “resource”). This class contains what

is basically a giant list of static “constants”—one for each resource! These constants are

organized into subclasses, one for each resource type. This allows you to refer to a specific

resource in the Java code as [(package_name).]R.resource_type.identifier similar to the kind

of syntax used to refer to a nested JSON object! For example: R.string.hello (the hello string

resource), R.drawable.icon or R.layout.activity_main

https://info448-s17.github.io/lecture-notes/resources-and-layouts.html#fn8
https://en.wikipedia.org/wiki/XML
https://developer.android.com/guide/topics/resources/accessing-resources.html

 For most resources, the identifier is defined as an element attribute (id for specific

View elements in layouts, name attribute for values). For more complex resources

such as entire layouts or drawables, the identifier is the filename (without the XML);

hence R.layout.activity_main refers to the root element of

the layout/activity_main.xml file.

 Note that that @ symbol used in the XML goes to the R Java file to look things up,

so follows the same reference syntax.

You can find the generated R.java file inside app/build/generated/source/r/debug/... (Use

the Project Files view in Android Studio).

The static constants inside the R.java file are often just ints that are pointers to element

references (similar to passing a pointer* around in the C language). So in the Java, we

usually work with int as the data type for XML resources, because we’re actually working

with pointers to those resources.

 You can think of each int constant as a “key” or “index” for that resource (in the list

of all resources). Android does the hard work of taking that int, looking it up in an

internal resource table, finding the associated XML file, and then getting the right

element out of that XML. (By hard work, I mean in terms of implementation.

Android is looking up these references directly in memory, so the look-up is a

fast O(1)).

Because the R class is included in the Java, we can access these constants directly in our

code (as R.resource_type.identifier). For example, the setContentView() call in an

Activity’s onCreate() takes in a resource int.

 The other comment method that utilizes resources will be findViewById(int), which

is used to reference a View element (e.g., a button) from the resource in order to call

methods on it in Java. This is the same method used with the Button example in

the Activities lecture

The R class is regenerated all time (any time you change a resource, which is often); when

Eclipse was the recommend Android IDE, you often needed to manually regenerate the class

so that the IDE’s index would stay up to date! You can perform a similar task in Android

Studio by using Build > Clean Project and Build > Rebuild Project.

2.2 Views

The most common type of element we’ll define in resources are Views9. View is the

superclass for visual interface elements—a visual component on the screen is a View.

Specific types of Views include: TextViews, ImageViews, Buttons, etc.

 View is a superclass for these components because it allows us to

use polymorphism to treat all these visual elements the same way as instances of

the same type. We can lay them out, draw them, click on them, move them, etc. And

all the behavior will be the same—though subclasses can also have “extra” features

Here’s the big trick: one subclass of View is ViewGroup10. A ViewGroup can contain other

“child” Views. But since ViewGroup is a View… it can contain more ViewGroups inside

it! Thus we can nest Views within Views, following the Composite Pattern. This ends up

working a lot like HTML (which can have DOM elements like <div> inside other DOM

elements), allowing for complex user interfaces.

 Thus Views are structured into a tree, what is known as the View hierarchy.

Views are defined inside of Layouts—that is, inside a layout resource, which is an XML file

describing Views. These resources are “inflated” (rendered) into UI objects that are part of

the application.

Technically, Layouts are simply ViewGroups that provide “ordering” and “positioning”

information for the Views inside of them. they let the system “lay out” the Views

intelligently and effectively. Individual views shouldn’t know their own position; this

follows from good good object-oriented design and keeps the Views encapsulated.

Android studio does come with a graphical Layout Editor (the “Design” tab) that can be

used to create layouts. However, most developers stick with writing layouts in XML. This

is mostly because early design tools were pathetic and unusable, so XML was all we had.

Although Android Studio’s graphical editor can be effective, for this course you should

create layouts “by hand” in XML. This is helpful for making sure you understand the pieces

underlying development, and is a skill you should be comfortable with anyway (similar to

how we encourage people to use git from the command-line).

2.2.1 View Properties

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/ViewGroup.html
http://www.oodesign.com/composite-pattern.html
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/studio/write/layout-editor.html

Before we get into how to group Views, let’s focus on the individual, basic View classes.

As an example, consider the activity_main layout in the lecture code. This layout contains

two individual View elements (inside a Layout): a TextView and a Button.

All View have properties which define the state of the View. Properties are usually defined

within the resource XML as element attributes. Some examples of these property attributes

are described below.

 android:id specifies a unique identifier for the View. This identifier needs to be

unique within the layout, though ideally is unique within the entire app (for clarity).

Identifiers must be legal Java variable names (because they are turned into a variable

name in the R class), and by convention are named in lower_case format.

o Style tip: it is useful to prefix each View’s id with its type (e.g., btn, txt, edt).

This helps with making the code self-documenting.

You should give each interactive View a unique id, which will allow its state to

automatically be saved as a Bundle when the Activity is destroyed. See here for

details.

 android:layout_width and android:layout_height are used to specify the View’s

size on the screen (see ViewGroup.LayoutParams for documentation). These values

can be a specific value (e.g., 12dp), but more commonly is one of two special values:

o wrap_content, meaning the dimension should be as large as the content

requires, plus padding.

o match_parent, meaning the dimension should be as large as

the parent (container) element, minus padding. This value was renamed

from fill_parent (which has now been deprecated).

Android utilizes the following dimensions or units:

o dp is a “density-independent pixel”. On a 160-dpi (dots-per-inch)

screen, 1dp equals 1px (pixel). But as dpi increases, the number of pixels

per dp increases. These values should be used instead of px, as it allows

dimensions to work independent of the hardware’s dpi (which

is highly variable).

o px is an actual screen pixel. DO NOT USE THIS (use dp instead!)

https://developer.android.com/guide/components/activities/activity-lifecycle.html#saras
http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html
https://developer.android.com/guide/topics/resources/more-resources.html#Dimension
https://www.google.com/design/spec/layout/units-measurements.html

o sp is a “scale-independent pixel”. This value is like dp, but is scale by the

system’s font preference (e.g., if the user has selected that the device should

display in a larger font, 1sp will cover more dp). You

should always use sp for text dimensions, in order to support user

preferences and accessibility.

o pt is 1/72 of an inch of the physical screen. Similar units mm and in are

available. Not recommended for use.

 android:padding, android:paddingLeft, android:margin, android:marginLeft,

etc. are used to specify the margin and padding for Views. These work basically the

same way they do in CSS: padding is the space between the content and the “edge”

of the View, and margin is the space between Views. Note that unlike CSS, margins

between elements do not collapse.

 android:textSize specifies the “font size” of textual Views

(use sp units!), android:textColor specifies the color of text (reference a color

resource!), etc.

 There are lots of other properties as well! You can see a listing of generic properties

in the View11 documentation, look at the options in the “Design” tab of Android

Studio, or browse the auto-complete options in the IDE. Each different View class

(e.g., TextView, ImageView, etc.) will also have their own set of properties.

Note that unlike CSS, styling properties specified in the layout XML resources are not

inherited; we’re effectively specifying an inline style attribute for that element, and one that

won’t affect child elements. In order to define shared style properies, you’ll need to

use styles resources, which are discussed in a later lecture.

While it is possible to specify these visual properties dynamically via Java methods

(e.g., setText(), setPadding()). You should only use Java methods to specify View

properties when they need to be dynamic (e.g., the text changes in response to a button

click)—it is much cleaner and effective to specify as much visual detail in the XML resource

files as possible. It’s also possible to simply replace one layout resource with another (see

below).

 Views also have inspection methods such as isVisible() and hasFocus(); we will

point to those as we need them.

https://developer.android.com/reference/android/view/View.html#lattrs
https://developer.android.com/reference/android/view/View.html#lattrs
https://developer.android.com/guide/topics/ui/themes.html#DefiningStyles

Do not define Views or View appearances in an Activity’s onCreate() callback, unless the

properties (e.g., content) truly cannot be determined before runtime! Specify layouts in the

XML instead.

2.2.2 Practice

Add a new ImageView element that contains a picture. Be sure and specify its id and size

(experiment with different options).

You can specify the content of the image in the XML resource using the android:src attribute

(use @ to reference a drawable), or you can specify the content dynamically in Java code:

ImageView imageView = (ImageView)findViewById(R.id.img_view);

imageView.setImageResource(R.drawable.my_image);

2.3 Layouts

As mentioned above, a Layout is a grouping of Views (specifically, a ViewGroup). A

Layout acts as a container for other Views, to help organize things. Layouts are all subclasses

of ViewGroup, so you can use its inheritance documentation to see a (mostly) complete list

of options, though many of the listed classes are deprecated in favor of later, more

generic/powerful options.

2.2.1 LinearLayout

Probably the simplest Layout to understand is the LinearLayout. This Layout simply orders

the children View in a line (“linearly”). All children are laid out in a single direction, but

you can specify whether this is horizontal or vertical with the android:orientation property.

See LinearLayout.LayoutParams for a list of all attribute options!

 Remember: since a Layout is a ViewGroup is a View, you can also utilize all the

properties discussed above; the attributes are inherited!

Another common property you might want to control in a LinearLayout is how much of any

remaining space the elements should occupy (e.g., should they expand). This is done with

the android:layout_weght property. After all element sizes are calculated (via their

individual properties), the remaining space within the Layout is divided up proportionally

http://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/guide/topics/ui/layout/linear.html
https://developer.android.com/reference/android/widget/LinearLayout.LayoutParams.html

to the layout_weight of each element (which defaults to 0 so they get no extra space). See

the example in the guide for more details.

 Useful tip: Give elements 0dp width or height and 1 for weight to make everything

in the Layout the same size!

You can also use the android:layout_gravity property to specify the “alignment” of elements

within the Layout (e.g., where they “fall” to). Note that this property is specified on

individual child Views.

An important point Since Layouts are Views, you can of course nest LinearLayouts inside

each other! So you can make “grids” by creating a vertical Layout containing “rows” of

horizontal Layouts (which contain Views). As with HTML, there are lots of different options

for achieving any particular interface layout.

2.2.2 RelativeLayout

A RelativeLayout is more flexible (and hence powerful), but can be more complex to use.

In a RelativeLayout, children are positioned “relative” to the parent OR to each other. All

children default to the top-left of the Layout, but you can give them properties

from RelativeLayout.LayoutParams to specify where they should go instead.

For example: android:layout_verticalCenter centers the View vertically within the

parent. android:layout_toRightOf places the View to the right of the View with the given

resource id (use an @ reference to refer to the View by its id):

<TextView

 android:id="@+id/first"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="FirstString" />

<TextView

 android:id="@+id/second"

 android:layout_height="wrap_content"

 android:layout_below="@id/first"

 android:layout_alignParentLeft="true"

 android:text="SecondString" />

(Recall that the @+ syntax defines a new View id, like declaring a variable!)

https://developer.android.com/guide/topics/ui/layout/linear.html#Weight
https://developer.android.com/reference/android/widget/LinearLayout.LayoutParams.html#attr_android:layout_gravity
https://developer.android.com/guide/topics/ui/layout/relative.html
https://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

You do not need to specify both toRightOf and toLeftOf; think about placing one element

on the screen, then putting another element relative to what came before. This can be tricky.

For this reason the author prefers to use LinearLayouts, since you can always produce a

Relative positioning using enough LinearLayouts (and most layouts end up being linear in

some fashion anyway!)

2.2.3 ConstraintLayout

ConstraintLayout is a Layout provided as part of an extra support library, and is what is used

by Android Studio’s “Design” tool (and thus is the default Layout for new layout

resources). ConstraintLayout works in a manner conceptually similar to RelativeLayout, in

that you specify the location of Views in relationship to one another.

However, ConstraintLayout offers a more powerful set of relationships in the form

of constraints, which can be used to create highly responsive layouts. See the class

documentation for more details and examples of constraints you can add.

The main advantage of ConstraintLayout is that it supports development through Android

Studio’s Design tool. However, since this course is focusing on implementing the resource

XML files rather than using the specific tool (that may change in a year’s time), we will

primarily be using other layouts.

2.2.4 Other Layouts

There are many other layouts as well, though we won’t go over them all in depth. They all

work in similar ways; check the individual class’s documentatoion for details.

 FrameLayout is a sort of “placeholder” layout that holds a single child View (a

second child will not be shown). You can think of this layout as a way of adding a

simple container to use for padding, etc. It is also highly useful for situations where

the framework requires you to specify a Layout resource instead of just an individual

View.

 GridLayout arranges Views into a Grid. It is similar to LinearLayout, but places

elements into a grid rather than into a line.

Note that this is different than a Grid_View_, which is a scrollable, adaptable list

(similar to a ListView, which is discussed in the next lecture).

https://developer.android.com/training/constraint-layout/index.html
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/reference/android/widget/FrameLayout.html
https://developer.android.com/reference/android/widget/GridLayout.html
https://developer.android.com/guide/topics/ui/layout/gridview.html

 TableLayout acts like an HTML table: you define TableRow layouts which can be

filled with content. This View is not commonly used.

2.2.5 Combining and Inflating Layouts

It is possible to combine multiple layout resources. This is useful if you want to dynamically

change what Views are included, or to refactor parts of a layout into different XML files to

improve code organization.

As one option, you can statically include XML layouts inside other layouts by using

an <include> element:

<include layout="@layout/sub_layout">

But it is also possible to dynamically load views “manually” (e.g., in Java code) using

the LayoutInflator. This is a class that has the job of “inflating” (rendering) Views. The

process is called “inflating” based on the idea that it is “unpacking” or “expanding” a

compact resource description into a complex Java Object. LayoutInflator is implicitly used

in the setContentView() method, but can also be used independently with the following

syntax:

LayoutInflator inflator = getLayoutInflator(); //access the inflator (called on the Activity)

View myLayout = inflator.inflate(R.layout.my_layout, parentViewGroup, true); //to attach

Note that we never instantiate the LayoutInflator, we just access an object that is defined as

part of the Activity.

The inflate() method takes a couple of arguments:

 The first parameter is a reference to the resource to inflate (an int saved in R)

 The second parameter is a ViewGroup to act as the “parent” for this View—e.g.,

what layout should the View be inflate inside? This can be null if there is not yet a

layout context; e.g., you wish to inflate the View but not show it on the screen yet.

 The third (optional) parameter is whether to actually attach the inflated View to that

parent (if not, the parent just provides context and layout params to use). If not

assigning to parent on inflation, you can later attach the View using methods

in ViewGroup (e.g., addView(View) similar to what we’ve done with Swing).

Manually inflating a View works for dynamically loading resources, and we will often see

UI implementation patterns that utilize Inflators.

http://developer.android.com/guide/topics/ui/layout/grid.html
https://developer.android.com/training/improving-layouts/reusing-layouts.html
https://developer.android.com/reference/android/view/LayoutInflater.html
http://developer.android.com/reference/android/view/LayoutInflater.html#inflate(int,%20android.view.ViewGroup,%20boolean)

However, for dynamic View creation it tends to be messy and hard to maintain (UI work

should be specified entirely in the XML, without needing multiple references to parent and

child Views) so it isn’t as common in modern development. A much cleaner solution is to

use a ViewStub12. A ViewStub is like an “on deck” Layout: it is written into the XML, but

isn’t actually shown until you choose to reveal it via Java code. With a ViewStub, Android

inflates the View at runtime, but then removes it from the parent (leaving a “stub” in its

place). When you call inflate() (or setVisible(View.VISIBLE)) on that stub, it is reattached

to the View tree and displayed:

<!-- XML -->

<ViewStub android:id="@+id/stub"

 android:inflatedId="@+id/subTree"

 android:layout="@layout/mySubTree"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

//Java

ViewStub stub = (ViewStub)findViewById(R.id.stub);

View inflated = stub.inflate();

3.1 Inputs

The previous lecture discussed Views and ViewGroups (Layouts), and introduced some

basic Views such as TextView, ImageView, and Button.

A Button is an example of an Input Control. These are simple (single-purpose; not

necessarily lacking complexity) widgets that allow for user input. There are many such

widgets in addition to Button, mostly found in the android.widget package. Many

correspond to HTML <input> elements, but Android provided additional widgets at well.

Launch the lecture code’s MainActivity with a content View

of R.id.input_control_layout to see an example of many widgets (as well as a demonstration

of a more complex layout!). These widgets include:

 Button, a widget that affords clicking. Buttons can display text, images or both.

https://developer.android.com/training/improving-layouts/loading-ondemand.html
https://developer.android.com/training/improving-layouts/loading-ondemand.html
https://en.wikipedia.org/wiki/On-deck
https://developer.android.com/guide/topics/ui/controls.html
https://developer.android.com/reference/android/widget/package-summary.html
https://developer.android.com/guide/topics/ui/controls/button.html

 EditText, a widget for user text entry. Note that you can use

the android:inputType property to specify the type of the input similar to an

HTML <input>.

 Checkbox, a widget for selecting an on-off state

 RadioButton, a widget for selecting from a set of choices. Put RadioButton elements

inside a RadioGroup element to make the buttons mutually exclusive.

 ToggleButton, another widget for selecting an on-off state.

 Switch, yet another widget for selecting an on-off state. This is just

a ToggleButton with a slider UI. It was introduced in API 14 and is the “modern”

way of supporting on-off input.

 Spinner, a widget for picking from an array of choices, similar to a drop-down menu.

Note that you should define the choices as a resource (e.g., in strrings.xml).

 Pickers: a compound control around some specific input (dates, times, etc). These

are typically used in pop-up dialogs, which will be discussed in a future lecture.

 …and more! See the android.widget package for further options.

All these input controls basically work the same way: you define (instantiate) them in the

layout resource, then access them in Java in order to define interaction behavior.

There are two ways of interacting with controls (and Views in general) from the Java code:

1. Calling methods on the View to manipulate it. This represents “outside to inside”

communication (with respect to the View).

2. Listening for events produced by the View and responding to then. This represents

“inside to outside” communication (with respect to the View).

An example of the second, event-driven approach was introduced in Lecture 2. This

involved registering a listener for the event (after acquiring a reference to the View

with findViewById()) and then specifying a callback method (by instantiating the Listener

interface) that wiould be “called back to” when the event occurs.

 It is also possible to specify the callback method in the XML resource itself by using

e.g., the android:onClick attribute. This value of this attribute should be the name of

the callback method: It is also possible to

 <Button

https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/training/keyboard-input/style.html
https://developer.android.com/guide/topics/ui/controls/checkbox.html
https://developer.android.com/guide/topics/ui/controls/radiobutton.html
https://developer.android.com/guide/topics/ui/controls/togglebutton.html
https://developer.android.com/reference/android/widget/Switch.html
https://developer.android.com/guide/topics/ui/controls/spinner.html
https://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/reference/android/widget/package-summary.html

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="handleButtonClick" />

The callback method is declared in the Java code as taking in a View parameter

(which will be a reference to whatever View caused the event to occur) and

returning void:

public void handleButtonClick(View view) { }

 We will utilize a mix of both of these strategies (defining callbacks in both the Java

and the XML) in this class.

Author’s Opinion: It is arguable about which approach is “better”. Specifying the

callback method in the Java code helps keep the appearance and behavior separate,

and avoids introducing hidden dependencies for resources (the Activity must provide

the required callback). However, as buttons are made to be pressed, it isn’t

unreasonable to give a “name” in the XML resource as to what the button will do,

especially as the corresponding Java method may just be a “launcher” method that

calls something else. Specifying the callback in the XML resource may often seem

faster and easier, and we will use whichever option best supports clarity of our code.

Event callbacks are used to respond to all kind of input control widgets. CheckBoxes use

an onClick callback, ToggleButtons use onCheckedChanged, etc. Other common events can

be found in the View documentation, and are handled via listeners such

as OnDragListener (for drags), OnHoverListener (for “hover” events), OnKeyListener (for

when user types), or OnLayoutChangeListener (for when layout changes display).

In addition to listening for events, it is possible to call methods directly on referenced Views

to access their state. In addition to generic View methods such as isVisible() or hasFocus(),

it is possible to inquire directly about the state of the input provided. For example,

the isChecked() method returns whether or not a checkbox is ticked.

This is also a good way of getting access to inputted content from the Java Code. For

example, call getText() on an EditText control in order to fetch the contents of that View.

 For practice, try to log out the contents of the included EditText control when

the Button is pressed!

https://developer.android.com/reference/android/view/View.html#nestedclasses

Between listening for events and querying for state, we can fully interact with input controls.

Check the official documentation for more details on how to use specific individual widgets.

3.2 ListViews and Adapters

The remainder of the lecture utilizes the list_layout Layout in the lecture code.

Modify MainActivity so that it uses this resource as its viewContent.

Having covered basic controls, this section will now look at some more advanced interactive

Views. In particular, it will discuss how to utilize a ListView13, which is a ViewGroup that

displays a scrollable list of items! A ListView is basically a LinearLayout inside of

a ScrollView (which is a ViewGroup that can be scrolled). Each element within the

LinearLayout is another View (usually a Layout) representing a particular item in a list.

But the ListView does extra work beyond just nesting Views: it keeps track of what items

are already displayed on the screen, inflating only the visible items (plus a few extra on the

top and bottom as buffers). Then as the user scrolls, the ListView takes the disappearing

views and recycles them (altering their content, but not reinflating from scratch) in order to

reuse them for the new items that appear. This lets it save memory, provide better

performance, and overall work more smoothly. See this tutorial for diagrams and further

explanation of this recycling behavior.

 Note that a more advanced and flexible version of this behavior is offered by

the RecyclerView. See also this guide for more details.

The ListView control uses a Model-View-Controller (MVC) architecture. This is a deisgn

pattern common to UI systems which organizes programs into three parts:

1. The Model, which is the data or information in the system

2. The View, which is the display or representation of that data

3. The Controller, which acts as an intermediary between the Model and View and

hooks them together.

The MVC pattern can be found all over Android. At a high level, the resources

provide models and views (separately), while the Java Activities act as controllers.

https://developer.android.com/guide/topics/ui/layout/listview.html
https://developer.android.com/guide/topics/ui/layout/listview.html
https://github.com/codepath/android_guides/wiki/Using-an-ArrayAdapter-with-ListView#row-view-recycling
https://developer.android.com/guide/topics/ui/layout/recyclerview.html
https://developer.android.com/training/material/lists-cards.html

 Fun fact: The Model-View-Controller pattern was originally developed as part of

the Smalltalk language, which was the first Object-Oriented language!

Thus in order to utilize a ListView, we’ll have some data to be displayed (the model),

the views (Layouts) to be shown, and the ListView itself will connect these together act as

the controller. Specifically, the ListView is a subclass of AdapterView, which is a View

backed by a data source—the AdapterView exists to hook the View and the data together (a

controller!)

 There are other AdapterViews as well. For example, GridView works exactly the

same way as a ListView, but lays out items in a scrollable grid rather than a scrollable

list.

In order to use a ListView, we need to get the pieces in place:

1. First we specify the model: some raw data. We will start with a simple String[],

filling it with placeholder data:

2. String[] data = new String[99];

3. for(int i=99; i>0; i--){

4. data[99-i] = i+ " bottles of beer on the wall";

}

While we could define this data as an XML resource, we’ll create it dynamically for

testing (and to make it changeable later!)

5. Next we specify the view: a View to show for each datum in the list. Define an XML

layout resource for that (list_item is a good name and a common idiom).

For simplicity’s sake we don’t need to specify a full Layout, just a basic TextView.

Have the width match_parent and the height wrap_content. Don’t forget an id!

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/txtItem"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

To make it look better, you can

specify android:minHeight="?android:attr/listPreferredItemHeight" (using the

framework’s preferred height for lists), and some center_vertical gravity.

The android:lines property is also useful if you need more space.

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
https://developer.android.com/reference/android/widget/AdapterView.html
https://developer.android.com/guide/topics/ui/layout/gridview.html
https://developer.android.com/guide/topics/resources/string-resource.html#StringArray

6. Finally, we specify the controller: the ListView itself. Add that item to the

Activity’s Layout resource (practice: what should its dimensions be?)

To finish the controller ListView, we ned to provide it with an Adapter14 which will connect

the model to the view. The Adapter does the “translation” work between model and view,

performing a mapping from data types (e.g., a String) and View types (e.g., a TextView).

Specifically, we will use an ArrayAdapter, which is one of the simplest Adapters to use (and

because we have an array of data!) An ArrayAdapter creates Views by calling .toString() on

each item in the array, and setting that String as the content of a TextView!

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 R.layout.list_item_layout, R.layout.list_item_txtView, myStringArray);

 Note the parameters of the constructor: a Context, the item layout resource, the

TextView reource, and the data array. Also note that this instance utilizes generics,

since we’re using an array of Strings (as opposed to an array of Dogs or some other

type).

We acquire a reference to the ListView with findViewById(), and

call ListView#setAdapter() to attach the adapter to that controller.

ListView listView = (ListView)findViewById(R.id.listview);

listView.setAdapter(adapter);

And that’s all that is needed to create a scrollable list of data!

Each item in this list is selectable (can have an onClick callback). This allows us to click on

any item in order to (for example) view more details about the item. Utilize

the AdapterView#setOnItemClickListener(OnItemClickListener) function to register the

callback.

 The postion parameter in the onItemClick() callback is the index of the item which

was clicked. Use (Type)parent.getItemAtPosition(position) to access the data value

associated with that View.

Additionally, each item does have an individual layout, so we can customize these

appearances (e.g., if our layout also wanted to include pictures). See this tutorial for an

example on making a custom adapter to fill in multiple Views with data from a list!

And remember, a GridView is basically the same thing (in fact, we can just change over that

and have everything work, if we use polymorphism!)

https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews
https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews
https://developer.android.com/reference/android/widget/ArrayAdapter.html
https://github.com/codepath/android_guides/wiki/Using-an-ArrayAdapter-with-ListView#row-view-recycling

3.3 Network Data

In the previous section we created a ListView utilizing an adapter to display a list of Strings.

But Appendix C provides an implementation for fetching data from the Internet which gave

us a list of Strings. Can we combine these? You betchya!

The lecture code provides a MovieDownloader class containing the exact same networking

code utilized in the Appendix. We can then simply specify that the model String[] should be

the result of the downloadMovieData() method, rather than manually created with a loop.

If you test this code, you’ll notice that it doesn’t work! The program will crash with

a NetworkOnMainThreadException.

Android apps run by default on the Main Thread (also called the UI Thread). This thread

is in charge of all user interactions—handling button presses, scrolls, drags, etc.—but also

UI output like drawing and displaying text! See Android Threads for more details.

 A thread is a piece of a program that is independently scheduled by the processor.

Computers do exactly one thing at a time, but make it look like they are doing lots

of tasks simultaneously by switching between them (i.e., between processes) really

fast. Threads are a way that we can break up a single application or process into little

“sub-process” that can be run simultaneously—by switching back and forth

periodically so everyone has a chance to work

Within a single thread, all method calls are synchronous—that is, one has to finish before

the next occurs. You can’t get to step 4 without finishing step 3. With an event-driven system

like Android, each method call is fast enough that this isn’t a problem (you’re done handling

one click by the time the next occurs). But long, drawn-out processes like network access

(or processing bitmaps, or accessing a database), could cause other tasks to have to wait. It’s

like a traffic jam!

 Tasks such as network access are blocking method calls, which stop the Thread from

continuing. A blocked Main Thread will lead to the infamous “Application not

responding” (ANR) error!

Thus we need to move the network code off the Main Thread, onto a background thread,

thereby allowing it to run without blocking the user interaction that occurs on the Main

https://info448-s17.github.io/lecture-notes/java-threads-http.html#java-threads-http
https://developer.android.com/guide/components/processes-and-threads.html#Threads

Thread. To do this, we will use a class called ASyncTask15 to perform a task (such as

network access) asynchronously—without waiting for other Threads.

Learning Android Development involves knowing about what classes exist, and can be used

to solve problems, but how were we able to learn about the existing of this highly useful

(and specialized) ASyncTask class? We started from the official API Guide on Processes

and Threads Guide16, which introduces this class! Thus to learn about new Android

options, read the docs.

Note that an ASyncTask background thread will be tied to the lifecycle of the Activity: if we

close the Activity, the network connection will die as well. A better but much more complex

solution would be to use a Service—which is covered in a future lecture. But since this

example just involves getting a small amount of data, we don’t really care if the network

connection gets dropped.

ASyncTask can be fairly complicated, but is a good candidate to practice learning from the

API documentation. Looking at that documentation, the first thing you should notice (or

would if the API was a little more readable) is that ASyncTask is abstract, meaning you’ll

need to subclass it in order to use it. Thus you can subclass it as an inner class inside the

Activity that will use it (MovieDownloadTask is a good name).

You should also notice that ASyncTask is a generic class with three (3) generic parameters:

the type of the Parameter to the task, the type of the Progress measurement reported by the

task, and the type of the task’s Result. We can fill in what types of Parameter and Result we

want from our asynchronous method (e.g., take in a String and return a String[]), and use

the Void type for the Progress measurement (since we won’t be tracking that).

When we “run” an AsyncTask, it will do four (4) things, represented by four methods:

1. onPreExecute() is called on the UI thread before we run the task. This method can

be used to perform any setup for the task.

2. doInBackground(Params...) is called on the background thread to do the work we

want to be performed asynchronously. We must override this method (it’s abstract!)

The params and return type for the method need to match the ASyncTask generic

types.

3. onProgressUpdate() can be indirectly called on the UI thread if we want to update

our progress (e.g., update a progress bar). Note that UI changes can only be made on

the UI thread!

https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
https://info448-s17.github.io/lecture-notes/interactive-views.html#fn16

4. onPostExecute(Result) is called on the UI thread to process any task results, which

are passed as parameters to this method when doInBackground is finished.

The doInBackground() is what occurs on the background thread (and is the heart of the task),

so we put our network accessing method call in there.

We can then instantiate a new ASyncTask object in the Activity’s onCreate() callback, and

call ASyncTask#execute(params) to start the task running on its own thread.

If you test this code, you’ll notice that it still doesn’t work! The program will crash with

a SecurityException.

As a security feature, Android apps by default have very limited access to the overall

operating system (e.g., to do anything other than show a layout). An app can’t use the

Internet (which might consume people’s data plans!) without explicit permission from the

user. This permission is given by the user at install time.

In order to get permission, the app needs to ask for it (“Mother may I…”). We do that by

declaring that the app uses the Internet in the Manifest.xml file (which has all the details of

our app!)

<uses-permission android:name="android.permission.INTERNET"/>

<!-- put this ABOVE the <application> tag -->

Note that Marshmallow introduced a new security model in which users grant permissions

at run-time, not install time, and can revoke permissions whenever they want. To handle

this, you need to add code to request “dangerous” permissions (like Location, Phone, or

SMS access; Internet is not dangerous) each time you use it.

 For “normal” permissions (e.g., Internet), you declare the permission need in the

Manifest.

 For “dangerous” permissions (e.g., Location), you declare the permission need in the

Manifest and request permission programmatically in code each time you want to

use it.

Once we’ve requested permission (and have been granted that permission by virtue of the

user installing our application), we can finally connect to the Internet to download data. We

can log out the request results to provide it.

https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/training/permissions/requesting.html

In order to get the downloaded data into a ListView, we utilize the doPostExecute() method.

This method is run on the UI Thread so we can use it to update the View (we

can only change the View on the UI Thread, to avoid collisions). It also gets the results

returned by doInBackground() passed to it!

We take that passed in String[] and put that into the ListView. Specifically, we feed it into

the Adapter, which then works to populate the views.

 First clear out any previous data items in the adapter using adapter.clear().

 Then use adapter.add() or (adapter.addAll()) to add each of the new data items to the

Adapter’s model.

 You can call notifyDataSetChanged() on the Adapter to make sure that the View

knows the data has changed, but this method is already called by the .add() method

so isn’t necessary in this situation.

To finalize the app: we can enable the user to search for different movies by copying

the EditText and Button Views from the previous input_layout resource, accessing the text

from the former when the later is pressed. We can then pass the EditText content String into

the ASyncTask#execute() function (since we’ve declared that the generic ASyncTask takes

that type as the first Parameter).

 We can actually pass in multiple String arguments using the String... params spread

operator syntax (representing an arbitrary number of items of that type). See here for

details. The value that the ASyncTask methods actually get is an array of the

arguments.

In the end, we are able to downlod data from the Internet and show an interactive list of that

data in the app! We’ve done a whirl-wind tour of Android in this process: Layouts in the

XML, Adapters in the Activity, Threading in a new class, Security in the Manifest…

bringing lots of parts together to provide a particular piece of functionality.

4.1 The Action Bar

Let’s start one of the most prominent visual components in the default app: the App

Bar or Action Bar. This acts as the sort of “header” for your app, providing a dedicated

space for navigation and interaction (e.g., through menus). The ActionBar21 is a specific

type of Toolbar that is most frequenly used as the App Bar, offering a particular “look and

feel” common to Android applications.

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html#varargs
https://developer.android.com/training/appbar/index.html
https://developer.android.com/training/appbar/index.html
https://developer.android.com/reference/android/support/v7/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

While the AppCompatActivity used throughout this course automatically provides an

Action Bar for the app, it is also possible to add it directly (such as if you are using a different

Activity subclass). To add your own Action Bar, you specify a theme that does not include

an ActionBar, and then include an <android.support.v7.window.Toolbar> element inside

your layout wherever you want the toolbar to go. See Setting up the App Bar for details.

This will also allow you to put the Toolbar anywhere in the application’s layout (e.g., if you

want it to be stuck to the bottom).

 To see this in action, change the android:theme attribute of

the <application> element in

the Manifest to "@style/Theme.AppCompat.Light.NoActionBar". We’ll discuss this

process in more detail when we talk about Themes and Styles.

From in the Activity’s Java code, we can get access to the Action Bar by calling

the getSupportActionBar() method (for a support Toolbar). We can then call utility methods

on this object to interact with it; for example .hide() will hide the toolbar!

4.2 Menus

However, the main use for the Action Bar is a place to hold Menus. A Menu (specifically,

an options menu) is a set of items (think: buttons) that appear in the Action Bar. Menus can

be specified both in the Activity and in a Fragment; if declared in both places, they are

combined into a single menu in the Action Bar. This allows you to easily make “context -

specific” options menus that are only available for an appropriate Fragment, while keeping

Fragments modular and self-contained.

 Fun fact: before API 11, options menus appeared as buttons at the bottom of the

screen!

Menus, like all other user-facing elements, are defined as XML resources, specifically of

type menu. You can create a new menu resource through Android studio using File > New

> Android resource file and then choosing the Menu Resource type. This will create an XML

file with a main <menu> element.

Options can be added to the menu by specifying child XML elements,

particularly <item> elements. Common <item> attributes include:

 android:id: a unique id used to refer to the specific option in the Java code

http://developer.android.com/training/appbar/setting-up.html
https://developer.android.com/guide/topics/ui/menus.html
https://developer.android.com/guide/topics/ui/menus.html#options-menu
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/view/MenuItem.html

 android:title (required attribute): the text to display for the option. As user-facing

text, the content should ideally be defined as an XML String resource.

 app:showAsAction: whether or not the option should be listed in the Action Bar, or

collapsed under a “three-dots” button. Note when working with

the appcompat library, this option uses the app namespace (instead of android); you

will need to include this schema in the <menu> with the

attribute xmlns:app="http://schemas.android.com/apk/res-auto".

 android:icon: an image to use when showing the option as a button on the

menu //CHECK THIS

You can use one of the many icons built into the Android, referenced

as "@android:drawable/ic_*". Android Drawables22 includes the full list, though not

all drawables are publicly available through Android Studio.

 android:orderInCategory: used to order the item in the menu (or in a group). This

acts as a “priority” (default 0; low comes first). Such prioritizing can be useful if you

want to add suggestions about whether Fragment options should come before or after

the Actiity options.

See the Menu resources guide23 for the full list of options!

It is possible to include one level of sub-menus (a <menu> element inside

an <item> element). Menu items can also be grouped together by placing them inside of

a <group> element. All items in a group will be shown or hidden together, and can be further

ordered within that group. Grouped icons can also be made checkable.

In order to show the menu in the running application, we need to tell the Action Bar which

menu resource it should use (there may be a lot of resources). To do this, we override

the onCreateOptionsMenu() callback in the Activity or Fragment, and then use the

component’s MenuInflater object to expand the menu:

public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.main_menu, menu); //inflate into this menu

 return true;

}

http://androiddrawables.com/
http://androiddrawables.com/
https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/guide/topics/ui/menus.html#checkable

 This procedure is similar in concept to how a Fragment’s onViewCreated() method

would inflate the Fragment into the Activity. In this case, the Menu is being inflated

into the Action Bar.

We can respond to the menu items being selected by overriding

the onOptionsItemSelected() callback. By convention, we use a switch on

the item.getItemId() to determine what item was selected, and then act accordingly.

public boolean onOptionsItemSelected(MenuItem item) {

 switch(item.getItemId()){

 case R.id.menu_item1 :

 //do thing;

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

 On default (if the item selected isn’t handled by any cases), we pass the callback up

to super for “higher-level” components to check. For exampe, if a the menu option

isn’t handled by the Fragment (because the Fragment didn’t add it), the event can be

passed up through the Framework for eventually handling by the Activity (who did

add it).

 This method should return true if the selection even has been handled (and thus

should not be considered by anyone else). Return false if you want other components

(e.g., other Fragments) to be able to respond to this option as well.

There are many other menu items that can be placed on Action Bar as well. We can also

add Action Views that provide more complex interactions than just clicking buttons (for

example, including a search bar). An Action Provider (like ShareActionProvider) is an

action with its own customized layout, expanding into a separate View when clicked. We

wil discuss how to utilize these features in a future lecture.

4.2.1 Context Menus

In addition to options menus available in the Action Bar, we can also specify contextual

menus that pop up when the user long-presses on an element. This works similarly to using

an options menu, but with a different set off callbacks:

https://developer.android.com/training/appbar/action-views.html
https://developer.android.com/training/appbar/action-views.html#action-provider
https://developer.android.com/training/sharing/shareaction.html
https://info448-s17.github.io/lecture-notes/intents.html#intents
https://developer.android.com/guide/topics/ui/menus.html#context-menu
https://developer.android.com/guide/topics/ui/menus.html#context-menu

 When setting up the the View layout (e.g., in an Activity’s onCreate()), we specify

that an element has a context menu using the registerForContextMenu() method,

passing it the View we want to be able to create the menu for.

 Specify the context menu to use through the onCreateContextMenu() callback. This

works exactly like setting up an options menu.

 In fact, a context menu can even use the same menu as an options menu! This reuse

is one of the advantages of defining the user interface as XML.

 And mirroring the options menu, respond to context menu items being selected with

the onContextItemSelected() callback.

This section has provided a very brief introduction to menus, but there are many more

complex interactions that they support. I highly recommend that you read through the

guide in order to learn what features may be available.

If you ever are using an app and wonder “how did they add this interface feature?”, look it

up! There is almost always a documented procedure and example for providing that kind of

component.

4.3 Dialogs

While it is simple enough to make menu items that log out some text, logs cannot be seen

the user. Instead, we woud like to show the message to the user as a kind of “pop -up”

message.

A Dialog24 is a “pop-up” modal (a view which doesn’t fill the screen) that either asks the

user to make a decision or provides some additional information. At it’s most basic, Dialogs

are similar to the window.alert() function used in JavaScript.

There is a base Dialog class, but almost always we use a pre-defined subclass instead

(similar to how we’ve use AppCompatActivity). AlertDialog25 is the most common version:

a simple message with buttons you can respond with (confirm, cancel, etc).

We don’t actually instantiate an AlertDialog directly (in fact, it’s constructors

are protected so inaccessible to us). Instead we use a helper factory class called

an AlertDialog.Builder. There are a number of steps to use a builder to create a Dialog:

https://developer.android.com/guide/topics/ui/menus.html
https://developer.android.com/guide/topics/ui/menus.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://en.wikipedia.org/wiki/Modal_window
https://developer.android.com/reference/android/support/v7/app/AlertDialog.html
https://developer.android.com/reference/android/support/v7/app/AlertDialog.html
https://developer.android.com/reference/android/support/v7/app/AlertDialog.Builder.html

1. Instantiate a new builder for this particular dialog. The constructor takes in

a Context under which to create the Dialog. Note that once the builder is initialized,

you can create and recreate the same dialog with a single method call—that’s the

benefits of using a factory.

2. Call “setter” methods on the builder in orer to specify the title, message, etc. for the

dialog that will appear. This can be hard-coded text or a reference to an XML String

resource (as a user-facing String, the later is more appropriate for published

applications). Each setter method will return a reference to the builder, making it

easy to chain them.

3. Use appropriate setter methods to specify callbacks (via

a DialogInterface.OnClickListener) for individual buttons. Note that the “positive”

button normally has the text "OK", but this can be customized.

4. Finally, actually instantiate the AlertDialog with the builder.create() method, using

the show() method to make the dialog appear on the screen!

AlertDialog.Builder builder = new AlertDialog.Builder(this);

builder.setTitle("Alert!")

 .setMessage("Danger Will Robinson!");

builder.setPositiveButton("I see it!", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // User clicked OK button

 }

});

AlertDialog dialog = builder.create();

dialog.show();

An important part of learning to develop Android applications is being able to read the API

to discover effective options. For example, can you read the AlertDialog.Builder API and

determine how to add a “cancel” button to the alert?

While AlertDialog is the most common Dialog, Android supports other subclasses as well.

For example, DatePickerDialog and TimePickerDialog provide pre-defined user interfaces

for picking a date or a time respectively. See the Pickers guide for details about how to

utilize these.

https://developer.android.com/reference/android/support/v7/app/AlertDialog.Builder.html
https://developer.android.com/reference/android/app/DatePickerDialog.html
https://developer.android.com/reference/android/app/TimePickerDialog.html
https://developer.android.com/guide/topics/ui/controls/pickers.html

4.3.1 DialogFragments

The process described above will create and show a Dialog, but that dialog has a few

problems in how it interacts with the rest of the Android framework—namely with the

lifecycle of the Activity in which it is embedded.

For example, if the device changes configurations (e.g., is rotated from portrait to landscape)

then the Activity is destroyed and re-created (it’s onCreate() method will be called again).

But if this happens while a Dialog is being shown, then a android.view.WindowLeaked error

will be displayed and the Dialog is lost!

To avoid these problems, we need to have a way of giving that Dialog its own lifecycle

which can interact with the the Activity’s lifecycle… sort of like making it a modular piece

of an Activity… that’s right, we need to make it a Fragment! Specifically, we will use a

subclass of Fragment called DialogFragment, which is a Fragment that displays as a modal

dialog floating above the Activity (no extra work needed).

Just like with the Fragment examples from the previous lecture, we’ll need to create our own

subclass of DialogFragment. It’s often easiest to make this a nested class if the Dialog won’t

be doing a lot of work (e.g., shows a simple confirmation).

Rathern than specifying a Fragment layout through onCreateView(), we can instead override

the onCreateDialog() callback to specify a Dialog object that will provide the view

hierarchy for the Fragment. This Dialog can be created with the AlertDialog.Builder class

as before!

public static class MyDialogFragment extends DialogFragment {

 public static HelloDialogFragment newInstance() {

 Bundle args = new Bundle();

 HelloDialogFragment fragment = new HelloDialogFragment();

 fragment.setArguments(args);

 return fragment;

 }

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 //...

 AlertDialog dialog = builder.create();

http://developer.android.com/guide/topics/ui/dialogs.html#DialogFragment

 return dialog;

 }

}

Finally, we can actually show this DialogFragment by instantiating it (remember to use

a newInstance() factory method!) and then calling the show() method on it to make it show

as a Dialog. The show() method takes in a FragmentManager used to manage this

transaction. By using a DialogFragment, it is possible to change the device configuration

(rotate the phone) and the Dialog is retained.

Here’s the other neat trick: a DialogFragment is just a Fragment. That means we can use

it anywhere we normally used Fragments… including embedding them into layouts! For

example if you made the MoviesFragment subclass DialogFragment instead of Fragment, it

would be able to be used in the exact same as before. It’s still a Fragment, just with extra

features—one of which is a show() method that will show it as a Dialog!

 Use setStyle(DialogFragment.STYLE_NO_TITLE,

android.R.style.Theme_Holo_Light_Dialog) to make the Fragment look a little more

like a dialog.

The truth is that Dialogs are not very commonly used in Android (compare to other GU

systems). Apps are more likely to just dynamically change the Fragment or Activity being

shown, rather than interrupt the user flow by creating a pop-up modal. And 80% of the

Dialogs that are used are AlertDialogs. Nevertheless, it is worth being familiar with this

process and the patterns it draws upon!

4.4 Toasts

Dialogs are a powerful way of providing messages and information to users, but they are

pretty “heavy” in terms of both their interaction (they stop all other interaction to show the

user a message) and the effort required to implement them. Sometimes you just want a “pop-

up” message that isn’t quite as prominent and doesn’t require the user to click “okay” once

they’ve seen it.

A simple, quick way of giving some short visual feedback is to use what is called a Toast.

This is a tiny little text box that pops up at the bottom of the screen for a moment to quickly

display a message.

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

 It’s called a “Toast” because it pops up!

Toasts are pretty simple to implement, as with the following example (from the official

documentation):

Context context = this; //getApplicationContext(); //use application context to avoid

disappearing if Activity is closed quickly.

String text = "Hello toast!";

int duration = Toast.LENGTH_SHORT;

//use factory method instead of constructor

Toast toast = Toast.makeText(context, text, duration);

toast.show();

But since this Activity is a Context, and we can just use the Toast anonymously, we can

shorten this to a one-liner:

Toast.makeText(this, "Hello toast!", Toast.LENGTH_SHORT).show();

5.1 File Storage Locations

Android devices split file storage into two types: Internal storage and External storage.

These names come from when devices had built-in memory as well as external SD cards,

each of which may have had different interactions. However, with modern systems the

“external storage” can refer to a section of a phone’s built-in memory as well; the

distinctions are instead used for specifying access rather than physical data location.

 Internal storage is always accessible, and by default files saved internally

are only accessible to your app. Similarly, when the user uninstalls your app, the

internal files are deleted. This is usually the best place for “private” file data, or files

that will only be used by your application.

 External storage is not always accessible (e.g., if the physical storage is removed),

and is usually (but not always) world-readable. Normally files stored in External

storage persist even if an app is uninstalled, unless certain options are used. This is

usually used for “public” files that may be shared between applications.

https://developer.android.com/guide/topics/data/data-storage.html#filesInternal
https://developer.android.com/guide/topics/data/data-storage.html#filesExternal

When do we use each? Basically, you shuold use Internal storage for “private” files that you

don’t want to be available outside of the app, and use External storage otherwise.

 Note however that there are publicly-hidden External files—the big distinction

between the storage locations is less visibility and more about access.

In addition, both of these storage systems also have a “cache” location (i.e., an Internal

Cache and an External Cache). A cache is “(secret) storage for the future”, but in computing

tends to refer to “temporary storage”. The Caches are different from other file storage, in

that Android has the ability to automatically delete cached files if storage space is getting

low… However, you can’t rely on the operating system to do that on its own in an efficient

way, so you should still delete your own Cache files when you’re done with them! In short,

use the Caches for temporary files, and try to keep them small (less than 1MB

recommended).

 The user can easily clear an application’s cache as well.

In code, using all of these storage locations involve working with the File class. This class

represents a “file” (or a “directory”) object, and is the same class you may be familiar with

from Java SE.

 We can instantiate a File by passing it a directory (which is another File) and a

filename (a String). Instantiating the file will create the file on disk (but empty, size

0) if it doesn’t already exist.

 We can test if a File is a folder with the .isDirectory() method, and create new

directories by taking a File and calling .mkdir() on it. We can get a list of Files inside

the directory with the listFiles() method. See more API documentation for more

details and options.

The difference between saving files to Internal and External storage, in practice, simply

involves which directory you put the file in! This lecture will focus on working

with External storage, since that code ends up being a kind of “super-set” of

implementation details needed for the file system in general. We will indicate what changes

need to be made for interacting with Internal storage.

 This lecture will walk through implementing an application that will save whatever

the user types into an text field to a file.

https://developer.android.com/training/basics/data-storage/files.html#InternalVsExternalStorage
https://en.wiktionary.org/wiki/cache
https://developer.android.com/reference/java/io/File.html

Because a device’s External storage may be on removable media, in order to interact with it

in any way we first need to check whether it is available (e.g., that the SD card is mounted).

This can be done with the following check (written as a helper method so it can be reused):

public static boolean isExternalStorageWritable() {

 String state = Environment.getExternalStorageState();

 if (Environment.MEDIA_MOUNTED.equals(state)) {

 return true;

 }

 return false;

}

5.2 Permissions

Directly accessing the file system of any computer can be a significant security risk, so there

are substantial protections in place to make sure that a malicious app doesn’t run roughshod

over a user’s data. So in order to work with the file system, we first need to discuss how

Android handles permissions in more detail.

One of the most import aspect of the Android operating system’s design is the idea

of sandboxing: each application gets its own “sandbox” to play in (where all its toys are

kept), but isn’t able to go outside the box and play with someone else’s toys. The “toys”

(components) parts that are outside of the sandbox are things that would be impactful to the

user, such as network or file access. Apps are not 100% locked into their sandbox, but we

need to do extra work to step outside.

 Sandboxing also occurs at a package level, where packages (applications) are

isolated from packages from other developers; you can use certificate signing (which

occurs as part of our build process automatically) to mark two packages as from the

same developer if we want them to interact.

 Additionally, Android’s underlying OS is Linux-based, so it actually uses Linux’s

permission system under the hood (with user and group ids that grant access to

particular files or processes).

In order for an app to go outside of its sandbox (and use different components), it needs to

request permission to leave. We ask for this permission (“Mother may I?”) by declaring out-

https://developer.android.com/guide/topics/data/data-storage.html#MediaAvail
https://developer.android.com/guide/topics/permissions/requesting.html
https://en.wikipedia.org/wiki/Sandbox_(computer_security)

of-sandbox usages explicitly in the Manifest, as we’ve done before with getting permission

to access the Internet or send SMS messages.

Android permissions we can ask for are divided into two categories: normal and dangerous:

 Normal permissions are those that may impact the user (so require permission), but

don’t pose any serious risk. They are granted by the user at install time; if the user

chooses to install the app, permission is granted to that app. See this list for examples

of normal permissions. INTERNET is a normal permission.

 Dangerous permissions, on the other hand, have the risk of violating a user’s

privacy, or otherwise messing with the user’s device or other apps. These

permissions also need to be granted at install time. But IN ADDITION, starting from

Android 6.0 Marshmallow (API 23), users additionally need to grant dangerous

permission access at runtime, when the app tries to actually invoke the “permitted”

dangerous action.

o The user grants permission via a system-generated pop-up dialog. Note that

permissions are granted in “groups”, so if the user agrees to give

you RECEIVE_SMS permission, you get SEND_SMS permission as well.

See the list of permission groups.

o When the user grant permission at runtime, that permission stays granted as

long as the app is installed. But the big caveat is that the user can choose

to revoke or deny privileges at any time (they do this though System

settings)! Thus you have to check each time you want to access the feature if

the user has granted the privileges or not—you don’t know if the user

has currently given you permission, even if they had i

Writing to external storage is a dangerous permission, and thus we will need to do extra

work to support the Marshmallow runtime permission system.

 In order to support runtime permissions, we need to specify our app’s target SDK to

be 23 or higher AND execute the app on a device running Android 6.0

(Marshmallow) or higher. Runtime permissions are only considered if the OS

supports and the app is targeted that high. For lower-API devices or apps, permission

is only granted at install time.

https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/normal-permissions.html
https://developer.android.com/guide/topics/permissions/requesting.html#perm-groups

First we still need to request permission in the Manifest; if we haven’t announced that we

might ask for permission, we won’t be allowed to ask in the future. In particular, saving files

to External storage

requires android.permission.WRITE_EXTERNAL_STORAGE permission (which will also

grant us READ_EXTERNAL_STORAGE access).

Before we perform a dangerous action, we can check that we currently have permission:

int permissionCheck = ContextCompat.checkSelfPermission(activity,

Manifest.permission.PERMISSION_NAME);

 This function basically “looks up” whether we’ve been granted a particular

permission or not. It will return

either PackageManager.PERMISSION_GRANTED or PackageManager.PERMISS

ION_DENIED.

If permission has been granted, great! We can go about our business (e.g., saving a file to

external storage). But if permission has NOT been explicitly granted (at runtime), then we

have to ask for it. We do this by calling:

ActivityCompat.requestPermissions(activity, new

String[]{Manifest.permission.PERMISSION_NAME}, REQUEST_CODE);

 This method takes a context and then an array of permissions that we need access to

(in case we need more than one). We also provide a request code (an int), which we

can use to identify that particular request for permission in a callback that will be

executed when the user chooses whether to give us access or not. This is the same

pattern as when we sent an Intent for a result; asking for permission is conceptually

like sending an Intent to the permission system!

We can then provide the callback that will be executed when the user decides whether to

grant us permission or not:

public void onRequestPermissionsResult(int requestCode, String permissions[], int[]

grantResults) {

 switch (requestCode) {

 case REQUEST_CODE:

 if (grantResults.length > 0 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

 //have permission! Do stuff!

 }

 default:

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 }

}

We check which request we’re hearing the results for, what permissions were granted (if

any—the user can piece-wise grant permissions), and then we can react if everything is

good… like by finally saving our file!

 Note that if the user deny us permission once, we might want to try and

explain why we’re asking permission (see best practices) and ask again. Google

offers a utility method

(ActivityCompat#shouldShowRequestPermissionRationale()) which we can use to

show a rationale dialog if they’ve denied us once. And if that’s true, we might show

a Dialog or something to explain ourselves–and if they OK that dialog, then we can

ask again.

5.3 External Storage

Once we have permission to write to external file, we can actually do so! Since we’ve

verified that the External storage is available, we now need to pick what directory in that

storage to save the file in. With External storage, we have two options:

 We can save the file publicly. We use

the getExternalStoragePublicDirectory() method to access a public directory,

passing in what type of directory we want

(e.g., DIRECTORY_MUSIC, DIRECTORY_PICTURES, DIRECTORY_DOWNL

OADS etc). This basically drops files into the same folders that every other app is

using, and is great for shared data and common formats like pictures, music, etc..

Files in the public directories can be easily accessed by other apps (assuming the app

has permission to read/write from External storage!)

 Alternatively starting from API 18, we save the file privately, but still on External

storage (these files are world-readable, but are hidden from the user as media, so

they don’t “look” like public files). We access this directory with

https://developer.android.com/training/permissions/best-practices.html
https://developer.android.com/guide/topics/data/data-storage.html#SavingSharedFiles
http://developer.android.com/reference/android/os/Environment.html#lfields
https://developer.android.com/guide/topics/data/data-storage.html#AccessingExtFiles

the getExternalFilesDir() method, again passing it a type (since we’re basically

making our own version of the public folders). We can also use null for the type,

giving us the root directory.

Since API 19 (4.4 KitKat), you don’t need permission to write to private External storage.

So you can specify that you only need permission for versions lower than that:

xml <uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE"

android:maxSdkVersion="18" />

We can actually look at the emulator’s file-system and see our files by created using adb.

Connect to the emulator from the terminal using adb -s emulator-5554 shell (note: adb needs

to be on your PATH). Public external files can usually be found in /storage/sdcard/Folder,

while private external files can be found

in /storage/sdcard/Android/data/package.name/files (these paths may vary on different

devices).

Once we’ve opened up the file, we can write content to it by using the same IO classes we’ve

used in Java:

 The “low-level” way to do this is to create a a FileOutputStream object (or

a FileInputStream for reading). We just pass this constructor the File to write to. We

write bytes to this stream… but can write a String by calling myString.getBytes().

For reading, we’ll need to read in all the lines/characters, and probably build a String

out of them to show. This is actually the same loop we used when reading data from

an HTTP request!

 However, we can also use the same decorators as in Java

(e.g., BufferedReader, PrintWriter, etc.) if we want those capabilities; it makes

reading and writing to file a little easier

 In either case, remember to .close() the stream when done (to avoid memory

leaks)!

//writing

try {

 //saving in public Documents directory

 File dir =

getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS);

 if (!dir.exists()) { dir.mkdirs(); } //make dir if doesn't otherwise exist

 File file = new File(dir, FILE_NAME);

 Log.v(TAG, "Saving to " + file.getAbsolutePath());

 PrintWriter out = new PrintWriter(new FileWriter(file, true));

 out.println(textEntry.getText().toString());

 out.close();

} catch (IOException ioe) {

 Log.d(TAG, Log.getStackTraceString(ioe));

}

//reading

try {

 File dir =

getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS);

 File file = new File(dir, FILE_NAME);

 BufferedReader reader = new BufferedReader(new FileReader(file));

 StringBuilder text = new StringBuilder();

 //read the file

 String line = reader.readLine();

 while (line != null) {

 text.append(line + "\n");

 line = reader.readLine();

 }

 textDisplay.setText(text.toString());

 reader.close();

} catch (IOException ioe) {

 Log.d(TAG, Log.getStackTraceString(ioe));

}

This will allow us to have our “save” button write the message to the file, and have our

“read” button load the message from the file (and display it on the screen)!

5.4 Internal Storage & Cache

Internal storage works pretty much the same way as External storage. Remember that

Internal storage is always private to the app. We also don’t need permission to access

Internal storage!

For Internal storage, we can use the getFilesDir() method to access to the files directory (just

like we did with External storage). This method normally returns the folder

at /data/data/package.name/files.

Alternatively, we can use Context#openFileOutput() (or Context#openFileInput()) and pass

it the name of the file to open. This gives us back the Stream object for that file in the

Internal storage file directory, without us needing to do any extra work (cutting out the

middle-man!)

 These methods take a second parameter: MODE_PRIVATE will create the file

(or replace a file of the same name). Other modes available

are: MODE_APPEND (which adds to the end of the file if it exists instead of

erasing). MODE_WORLD_READABLE, and MODE_WORLD_WRITEABLE are

deprecated.

 Note that you can wrap a FileInputStream in a InputStreamReader in

a BufferedReader.

We can access the Internal Cache directory with getCacheDir() (and same read/write

process), or the External Cache directory with getExternalCacheDir(). We almost always

use the Internal Cache, because why would you want temporary files to be world-readable

(other than maybe temporary images…)

And again, once you have the file, you use the same process for reading and writing as

External storage.

For practice make the provided toggle support reading and writing to an Internal file as

well. This will of course be different file than that used with the External switch. Ideally this

code could be refactored to avoid duplication, but it gets tricky with the need for checked

exception handling.

5.5 Example: Saving Pictures

https://developer.android.com/guide/topics/data/data-storage.html#filesInternal

As another example of how we might use the storage system, consider the “take a selfie”

system from lecture 8. The code for taking a piecture can be found in a

separate PhotoActivity (which is accessible via the options menu).

To review: we sent an Intent with the MediaStore.ACTION_IMAGE_CAPTURE action,

and the result of that Intent included an Extra that was a BitMap of a low-quality thumbnail

for the image. But if we want to save a higher resolution version of that picture, we’ll need

to store that image in the file system!

To do this, we’re actually going to modify the Intent we send so it includes an additional

Extra: a file in which the picture data can be saved. Effectively, we’ll have our

Activity allocate some memory for the picture, and then tell the Camera where it can put the

picture data that it captures. (Intent envelops are too small to carry entire photos around!)

Before we send the Intent, we’re going to go ahead and create an (empty) file:

File file = null;

try {

 String timestamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new

Date()); //include timestamp

 //ideally should check for permission here, skipping for time

 File dir =

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES)

;

 file = new File(dir, "PIC_"+timestamp+".jpg");

 boolean created = file.createNewFile(); //actually make the file!

 Log.v(TAG, "File created: "+created);

} catch (IOException ioe) {

 Log.d(TAG, Log.getStackTraceString(ioe));

}

We will then specify an additional Extra to give that file’s location to the camera: if we

use MediaStore.EXTRA_OUTPUT as our Extra’s key, the camera will know what to do

with that! However, the extra won’t actually be the File but a Uri (recall: the “url” or

location of a file). We’re not sending the file itself, but the location of that file (because it’s

smaller data to fit in the Intent envelope).

 We can get this Uri with the Uri.fromFile(File) method:

https://info448-s17.github.io/lecture-notes/intents.html#intents

 //save as instance variable to access later when picture comes back

pictureFileUri = Uri.fromFile(file);

 Then when we get the picture result back from the Camera (in

our onActivityResult callback), we can access that file at the saved Uri and use it to

display the image! The ImageView.setImageUri() is a fast way of showing an image

file.

Note that when working with images, we can very quickly run out of memory (because

images can be huge). So we’ll often want to “scale down” the images as we load them into

memory. Additionally, image processing can take a while so we’d like to do it off the main

thread (e.g., in an AsyncTask). This can become complicated; the recommended solution is

to use a third-party library such as Glide, Picasso, or Fresco.

5.6 Sharing Files

Once we have a file storing the image, we can also save that image with other apps!

As always, in order to interact with other apps, we use an Intent. We can craft an implicit

intent for ACTION_SEND, sending a message to any apps that are able to send (share)

pictures. We’ll set the data type as image/* to mark this as an image. We will also attach the

file as an extra (specifically an EXTRA_STREAM). Again note that we don’t actually put

the file in the extra, but rather tha Uri for the file!

Since multiple activities may support this action, we can wrap the intent in a “chooser” to

force the user to pick which Activity to use:

Intent chooser = Intent.createChooser(shareIntent, "Share Picture");

//check that there is at least one option

if (shareIntent.resolveActivity(getPackageManager()) != null) {

 startActivity(chooser);

}

There is one complication though: because we’re saving files in External storage, the app

who is executing the ACTION_SEND will need to have permission to read the file (e.g., to

access External storage). The Messenger app on the emulator appears to lack this permission

by default, though we need to take a slightly different approach:

Rather than putting the file:// Uri in the Intent’s extra, we’ll need to create a content:// Uri

for a ContentProvider who is able to provide files to anyone who requests them regardless

https://developer.android.com/topic/performance/graphics/index.html
https://github.com/bumptech/glide
http://square.github.io/picasso/
http://frescolib.org/

of permissions (the provider grants permission to access its content). Luckily, each image

stored in the public directories is automatically tracked by a ContentProvider known as

the MediaStore. It easy to fetch a content:// Uri for a particular image file from this provider:

MediaScannerConnection.scanFile(this, new String[] {file.toString()}, null,

 new MediaScannerConnection.OnScanCompletedListener() {

 public void onScanCompleted(String path, Uri uri) {

 mediaStoreUri = uri; //save the content:// Uri for later

 Log.v(TAG, "MediaStore Uri: "+uri);

 }

 });

This provides a Uri that can be given to the Intent, and that the Messenger app will be able

to access! We can generate this Uri as soon as we have a file for the image to be saved in.

5.6.1 Bonus: Sharing with a FileProvider

This section has not be edited for formatting or content.

What happens if we try and share an Internal file? You’ll get an error (actually notified the

use!), because the other (email) app doesn’t have permission to read that file!

 There is a way around this though, and it’s by using a ContentProvider (haha!)

A ContentProvider explicit is about making content available outside of a package

(that’s why we declared it in the Manifest). Specifically, a ContentProvider can

convert a set of Files into a set of data contents (e.g., accessible with

the content:// protocol) that can be used and returned and understood by other apps!

o Kind of like a “File Server”

 Android includes a FileProvider class in the support library that does exactly this

work.

Setting up a FileProvider is luckily not too complex, though it has a couple of steps. You

will need to declare the <provider> inside you Manifest (see the guide link for an example).

<provider

 android:name="android.support.v4.content.FileProvider"

 android:authorities="edu.uw.mapdemo.fileprovider"

 android:exported="false"

 android:grantUriPermissions="true">

https://developer.android.com/reference/android/provider/MediaStore.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/training/secure-file-sharing/setup-sharing.html

 <meta-data

 android:name="android.support.FILE_PROVIDER_PATHS"

 android:resource="@xml/fileprovider" />

</provider>

The attributes you will need to specify are:

 android:authority should be your package name followed

by .fileprovider (e.g., edu.uw.myapp.fileprovider). This says what source/domain is

granting permission for others to use the file.

 The child <meta-data> tag includes an androd:resource attribute that should point to

an XML resource, of type xml (the same as used for your SharedPreferences). You

will need to create this file! The contents of this file will be a list of

what subdirectories you want the FileProvider to be able to provide. It will look

something like:

<?xml version="1.0" encoding="utf-8"?>

<paths xmlns:android="http://schemas.android.com/apk/res/android">

 <files-path name="my_maps" path="maps/" />

</paths>

The <files-path> entry refers to a subdirectory inside the Internal Storage files (the same

place that .getFilesDir() points to), with the path specifying the name of the subdirectory

(see why we made one called maps/?)

Once you have the provider specified, you can use it to get a Uri to the “shared” version of

the file using:

Uri fileUri = FileProvider.getUriForFile(context, "edu.uw.myapp.fileprovider",

fileToShare);

